If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-100v^2+49=0
a = -100; b = 0; c = +49;
Δ = b2-4ac
Δ = 02-4·(-100)·49
Δ = 19600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{19600}=140$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-140}{2*-100}=\frac{-140}{-200} =7/10 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+140}{2*-100}=\frac{140}{-200} =-7/10 $
| 2(r=9)20 | | 4(x-10)=1/2(x-8) | | 4(x-10=1/2(x-8) | | 7x=5x²-90 | | 40-2x=x^2 | | 4(2a-9)-6(10-a)=2 | | 18=-12-(x-1)(-4) | | 12.4+v/7=-5.1 | | z/8=5/7 | | 1.5^x=74 | | 67+x=90 | | (2k-1)^2=9 | | 2k+8+5k=-20 | | y/3 - 8=0 y | | 8t-(5t+3)=12 | | 4x^2+12x+48=0 | | F(×)=56x^2+65x-35 | | 2=2(m-16) | | 7+7b–2–15b+b=4b–5–11b+2+10 | | 2(3x–1)=-6x–2 | | 7x+8+2x-3=5x+7+4x-3 | | 17^-x+4=2^-7x | | 3(7x+5)=2 | | D=13x+15 | | -8d+-7d=15 | | 52=10x+7 | | 59+x=90 | | 10x-2=4(-x-10) | | 8e=36 | | 3g-7g=-4 | | 1/3(x+3)=12 | | 7-2-1/7-3x/7=2x/3-1/3 |